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We present a new algorithm for solving the real roots of a bivariate polynomial system
R ¼ ff ðx; yÞ; gðx; yÞg with a finite number of solutions by using a zero-matching method.
The method is based on a lower bound for the bivariate polynomial system when the sys-
tem is non-zero. Moreover, the multiplicities of the roots of R ¼ 0 can be obtained by the
associated quotient ring technique and a given neighborhood. From this approach, the par-
allelization of the method arises naturally. By using a multidimensional matching method
this principle can be generalized to the multivariate equation systems.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Considering the following system:
R ¼ ff ðx; yÞ; gðx; yÞg; ð1Þ
we assume that f ðx; yÞ; gðx; yÞ 2 Q½x; y�, where Q is the field of rational numbers. We call the zero-dimension if the bivariate
polynomial system (1) has a finite number of solutions.

Real solving bivariate polynomial system in a real field is an active area of research. It is equivalent to finding the inter-
sections of f ðx; yÞ and gðx; yÞ in the real plane. The problem is closely related to computing the topology of a plane real alge-
braic curve and other important operations in non-linear computational geometry and Computer-Aided Geometric Design
[1,10,12,14,16,20]. Another field of applications is the quantifier elimination [7,18]. There are several algorithms that tackle
this problem such as the Gr€ober basis method [21,24], the resultant method [13,27], the characteristic set method [4], and
the subdivision method [3,23]. The first three methods are symbolic manipulation techniques, which are principally exact
and stable. However, they have the disadvantage of intermediate expression swell. They can only be used to solve small-
and middle-scale problems in practice. The last one is a hybrid symbolic and numerical method. Nevertheless, its procedure
is very complicated. In this paper, we propose an efficient parallel numerical verification approach to remedy these
drawbacks.

In [9], Diochnos et al. presented three algorithms to real solving bivariate polynomial systems and analyzed their asymp-
totic bit complexities. Among the three algorithms, the difference is the way they match solutions. The method of specialized
Rational Univariate Representation (RUR) based on the fast greatest common divisor (hence the name GCD) computations of
polynomials with coefficients in an extension field to achieve efficiency (hence the name GRUR) has the lowest complexity
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and performs best in numerous experiments. The GRUR method projects the roots to the x-axis and y-axis, for each x-coordi-
nate a computes the GCD hða; yÞ of the square-free parts of f ða; yÞ and gða; yÞ, and isolates the roots of hða; yÞ ¼ 0 based on
computations of algebraic numbers and the RUR techniques. Our algorithm only uses resultant computation and real solving
for univariate polynomial equations with rational coefficients.

The hybrid method proposed by Hong et al. [17] that projects the roots of R to the x-axis and y-axis respectively and uses
the improved slope-based Hansen-Sengupta to determine whether the boxes formed by the projection intervals contain a
root of R. The numerical method only works for simple roots of R. When the system has multiple roots, the RUR technique
is used to isolate the roots. Compared with this method, our approach also computes two resultants of the same total de-
grees. However, our method is a complete one. Their numerical iteration method needs to use the RUR technique to finding
multiple roots. Meanwhile, we also consider discarding the extraneous factors arising from resultant computations to obtain
the reliable real roots.

In [2], Bekker et al. presented a Combinatorial Optimization Root Selection method (hence the name CORS) to match the
roots of a system of polynomial equations. However, the method is only suitable for solving a small system of polynomial
equations, and does not work for the multiple roots. Recently, Cheng et al. [5] proposed a local generic position method
to solve the bivariate polynomial equation system. The method can be used to represent the roots of a bivariate equation
system as the linear combination of the roots of two univariate equations. Moreover, the multiplicities of the roots of the
bivariate polynomial system are also derived. However, the method is very complicated to extend to solve the multivariate
equation systems. Our method can solve the larger systems and easily generalize to the multivariate equation systems.

In this paper, we propose a zero-matching method to solve the real roots of an equation system like (1). The basic idea of
zero-matching method is as follows: First projecting the roots of R to the x-axis, gives the real roots {a1;a2; � � � ;au}, and the
y-axis, gives the real roots {b1; b2; � � � ; bv}, where u and v are the number of real roots on x and y for the rest of this paper
respectively. Subsequently, f ðxi; yjÞ is computed for every xi and yj. To that end, for some root xi there is the corresponding
one or more roots yj to be determined satisfying R.

Our original contributions in this paper are the following: Finding a lower bound for a bivariate polynomial system is suc-
ceeded when the system is non-zero. The numerical method to determine the real roots of R ¼ 0 and the multiplicities of the
roots are given. Moreover, our approach that has given solutions to this situation can be the design of parallelized algorithms.
It can solve the larger systems and easily generalize to the multivariate equation systems. Our algorithm can be considered
as the parallel numerical verification method.

Meanwhile, in the literature [19] we find out the multiplicities of roots for the points of intersection of two curves are not
completely correct based on our discarding extraneous factors and multiplicities computing techniques.

The rest of this paper is organized as follows. Section 2 gives some notations, a lower bound for a bivariate polynomial
equation if it is non-zero, and how to determine the root multiplicity. Section 3 proposes the algorithm to real solving
the bivariate polynomial system and gives a detailed example. Section 4 presents some comparisons of our algorithm.
The final section concludes this paper.

2. Notations and main results

2.1. Notations

In what follows D is a ring, F is a commutative field of characteristic zero and F its algebraic closure. Typically D ¼ Z,
F ¼ Q and F ¼ Q.

In this paper, we consider the zero-dimensional bivariate polynomial system as follows:
f ðx; yÞ ¼
X

06i6n

X
06j6m

ai;jxiyj ¼ 0;

gðx; yÞ ¼
X

06i6p

X
06j6q

bi;jxiyj ¼ 0:

8>><
>>:

ð2Þ
Throughout this paper, note that degx ¼maxðn; pÞ, degy ¼maxðm; qÞ;N ¼maxðkfk1; jjgjj1Þ, where the jjf jj1 and jjgjj1 are the
one norm of the vector ða00; a01; � � � ; a0m; � � � ; an0; � � � ; anmÞ and ðb00; b01; � � � ; b0q; � � � ; bp0; � � � ; bpqÞ, so jjf jj1 ¼ RiRjjaijj, and
jjgjj1 ¼ RiRjjbijj, respectively. Let M ¼maxðjjtjj1; jjTjj1Þ, where the tðxÞ and TðyÞ are the no extraneous factors in the resultant
polynomial of R. jRj denotes that the bivariate polynomial system R has been assigned values to two variables.

Let p be the projection map from the R to the x-axis:
p : R2 ! R; such that pðx; yÞ ¼ x: ð3Þ
For a zero-dimensional system R defined in (2), let tðxÞ 2 Q½x� be the resultant of f ðx; yÞ and gðx; yÞ with respect to y:
tðxÞ ¼ Resyðf ðx; yÞ; gðx; yÞÞ: ð4Þ
Since R is zero-dimensional, we have tðxÞX0. Then pðVðRÞÞ# VðtðxÞÞ, where Vðf1; f2; � � � ; fmÞ is the set of common real zeros of
fi ¼ 0. If tðxÞ is irreducible, then denote the highest degree by degt . Let the real roots of tðxÞ ¼ 0 be



X. Qin et al. / Applied Mathematics and Computation 219 (2013) 7533–7541 7535
a1 < a2 < � � � < au: ð5Þ
By using the same method, let TðyÞ 2 Q½y� be the resultant of f ðx; yÞ and gðx; yÞ with respect to x:
TðyÞ ¼ Resxðf ðx; yÞ; gðx; yÞÞ: ð6Þ
If TðyÞ is irreducible, then denote the highest degree by degT . Let the real roots of TðyÞ be as follows:
b1 < b2 < � � � < bv : ð7Þ
We observe that the above projection map may generate extraneous roots. Fortunately, we can easily discard these extra-
neous factors by computing the determinant of the sub-matrix of the coefficient matrix. Moreover, if the resultant is irreduc-
ible, then it is no extraneous factors. However, when the resultant is reducible, it may suffer from the extraneous factors. The
method of removing extraneous factors mentioned can be adapted to the resultant for the bivariate polynomial system [28].
The following theorem is to remove the extraneous roots.

Theorem 2.1. R is defined as in (2). If the resultants of R for one variable is reducible, denoted by tem, then the resultant of
bivariate polynomial system is the only some irreducible factors in which the other variable appears.
Proof. The proof can be given similarly to that in Proposition 4.6 of Chapter 3 of [8]. h
2.2. A lower bound for jRj, if R – 0

The purpose of this subsection is to prove the following theorem.

Theorem 2.2. R is defined as in (2). Let a; b be two approximate real algebraic numbers. Denote by the integer s ¼ degt � degT , and
N as above. If jRj– 0, then
jRjP N1�sM�c�s; ð8Þ
where c is the constant satisfying certain conditions, jRj is defined as:

(a) If f ða; bÞ ¼ 0 or gða; bÞ ¼ 0, then jRj ¼maxfjf ða; bÞj; jgða; bÞjg;
(b) If f ða; bÞ– 0 and gða; bÞ – 0, then jRj ¼minfjf ða; bÞj; jgða; bÞjg.

Before giving the proof of theorem 2.2, we recall two lemmas:

Lemma 2.1. ([22, Lemma 3]). Let a1;a2; . . . ;aq be algebraic numbers of exact degree of d1; d2; . . . ; dq respectively. Define
D ¼ ½Qða1;a2; . . . ;aqÞ : Q�. Let P 2 Z½x1; x2; . . . ; xq� have degree at most Nh in xh(1 6 h 6 q). If Pða1;a2; . . . ;aqÞ– 0, then
jPða1;a2; . . . ;aqÞjP kPk1�D
1

Yq

h¼1

MðahÞ�DNh=dh ;
where the MðahÞ is the Mahler measure of ah.
Proof. See the Lemma 4 of [22]. h
Lemma 2.2. Let a be an algebraic number. Denote by the MðaÞ of the Mahler measure of a. If P is a polynomial over Z, then
MðaÞ 6 jjPjj1:
Proof. For any polynomial P ¼
Pd

i¼0pi 2 Z½x� of degree d with the all roots rð1Þ;rð2Þ; � � � ;rðdÞ, we define the measure MðPÞ by
MðPÞ ¼ jpdjP
d
i¼1 maxf1; jrðiÞjg:
The Mahler measure of an algebraic number is defined to be the Mahler measure of its minimal polynomial over Q. We know
from Landau ([15], p. 154, Thm. 6. 31) that for each algebraic number a
MðaÞ 6 jjPjj2;
where jjPjj2 ¼ ð
Pd

i¼0jpij
2Þ1=2. It is very easy to get that jjPjj2 6 jjPjj1. This completes the proof of the lemma. h

Now we turn to give the proof of Theorem 2.2.
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Proof. From the assumption of the theorem, since R is defined as in (2). Let the pair (a; b) be corresponding value to the
variable x and y for R respectively. We have the following equations:
f ða; bÞ ¼
X

06i6n

X
06j6m

ai;jaibj; ð9aÞ

gða;bÞ ¼
X

06i6p

X
06j6q

bi;jaibj: ð9bÞ
At first, we consider the lower bound for the equation (9a). Define k ¼ ½Qða; bÞ : Q�. Denote by jf j=jf ða; bÞj, and r; t by the exact
degree of algebraic numbers a; b respectively. From Lemma (2.1), if jf j– 0, then
jf jP jjf jj1�k
1 MðaÞ�kn=rMðbÞ�km=t

:

We observe that MðaÞ and MðbÞ derive from tðxÞ and TðyÞ respectively. From Lemma (2.2), we can get the following
inequality:
MðaÞ 6 jjtjj1; MðbÞ 6 jjTjj1:
So we can obtain that
jf jP jjf jj1�kjjtjj�kn=r
1 jjTjj�km=t

1 : ð10Þ

By using the same technique as above, we can obtain the lower bound for the equation (9b). Denote by jgj=jgða; bÞj. If jgj– 0,
then
jgjP jjgjj1�kjjtjj�kn=r
1 jjTjj�km=t

1 : ð11Þ

Since we have the following two cases:

(a) If f ða; bÞ ¼ 0 or gða; bÞ ¼ 0, then jRj ¼maxfjf ða; bÞj; jgða; bÞjg;
(b) If f ða; bÞ– 0 and gða; bÞ – 0, then jRj ¼minfjf ða; bÞj; jgða; bÞjg.

Hence we are able to obtain the lower bound for the bivariate polynomial system. From the above assumption, we can get
the following parameters:
k ¼ ½Qða;bÞ : Q� 6 degftðxÞg � degfTðyÞg ¼ degt � degT ; ð12aÞ
N ¼maxfjjf jj1; jjgjj1g;M ¼maxfjjtjj1; jjTjj1g; r ¼ degt; t ¼ degT : ð12bÞ
Combined with the Eq. (12a) and (12b), it is obvious that s ¼ k and the constant c ¼ degt
r þ

degT
t þ 1. Finally, note that the con-

stant c satisfies both cases. This proves the theorem. h

As the corollary of Theorem 2.2, we have

Corollay 2.1. Under the same condition of Theorem 2.2, if jRj < N1�sM�c�s, then jRj ¼ 0. We say that a is associated with b for the
real root of R. Denote by the e ¼ N1�sM�c�s for the rest of this paper.
Proof. The proof is very easy by contradiction. h
2.3. Root multiplicity

The results of this subsection can be provided for the root multiplicity of R. We follow the approach and terminology of
[8,11].

Let Cf ; Cg be f ; g corresponding affine algebraic plane curves, defined by the equations R. Let I ¼< f ; g > be the ideal that
they generate in F½x; y�, and so the associated quotient ring is A ¼ F½x; y�=I. Let the distinct intersection points, which are the
distinct roots of R, be Cf \ Cg � fSij ¼ ðai; bjÞg16i6u;16j6v .

The multiplicity of a point Sij is
multðSij : Cf \ CgÞ ¼ dimFASij <1;
where ASij is the local ring obtained by localizing A at the maximal ideal I ¼< x� ai; y� bj >.
If ASij is a finite dimensional vector space, then Sij ¼ ðai; bjÞ is an isolated zero of I and its multiplicity is called the inter-

section number of the two curves. The finite A can be decomposed as a direct sum A ¼ AS11 aAS12 a � � �aASuv and thus
dimFA ¼

Puv
i¼1multðSij : Cf \ CgÞ.

Proposition 2.1 [11, Proposition 1]. Let f ; g 2 F½x; y� be two coprime curves, and let p 2 F2 be a point. Then
multðp : fgÞP multðp : f Þmultðp : gÞ;
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where equality holds if and only if Cf and Cg have no common tangents at p.
Proposition 2.2. Let us obtain the real roots of R ¼ 0 in (5) and (7). If the two matching pairs ðai; bjÞ and
ðaiþ1; bjþ1Þðfor 1 6 i 6 u;1 6 j 6 vÞ are satisfying R ¼ 0, jai � aiþ1j < e and jbj � bjþ1j < e, then the ðai; bjÞ is multiple root of
R ¼ 0.
Proof. From Theorem 2.2 and Corollary 2.1, it is obvious that R ¼ 0 if and only if
jRj < e:
Therefore, the error controlling is less than e in numerical computation. Under the assumption of the proposition, we get
jai � aiþ1j < e and jbj � bjþ1j < e. So we are able to obtain that jai � aiþ1j ¼ 0 and jbj � bjþ1j ¼ 0 in the truncated error. This
proves the proposition. h

From Corollary 2.1, the two-tuple ða; bÞ is the real root of R ¼ 0. This method is called a zero-matching method. The tech-
nique is a posteriori method to match the solutions for the bivariate polynomial systems. It can be easily generalized to real
solving the multivariate polynomial systems.

3. Derivation of the algorithm

The aim of this section is to describe an algorithm for real solving bivariate polynomial equations by using zero-matching
method. We first find the parameters N; c and s, then obtain the no extraneous factors tðxÞ and TðyÞ with the resultant elim-
ination methods, and real solving two univariate polynomials, and finally match the real roots for the systems.

3.1. Description of algorithm

Algorithm 1 is to discard the extraneous factors from the resultant method, and Algorithm 2 is to obtain the solutions of
bivariate polynomial systems.

Algorithm 1. defðR;var)

Input:{f ðx; yÞ; gðx; yÞ}, var is one variable.

Output: No extraneous factors resultant of R.
1: tem Resvarff ðx; yÞ; gðx; yÞg;
2: if tem is irreducible then
3: return tem;
4: else
5: tem Res � extraneousfacotrs;
6: return Res.
7: end if

Now we can give the Algorithm 2 to compute the real roots for R ¼ 0.
Algorithm 2. zmmðR)

Input: R ¼ ff ðx; yÞ; gðx; yÞg is a zero-dimensional bivariate polynomial system.

Output: A set for the real roots of R ¼ 0.
1: Project on the x-axis such that tðxÞ ¼ Resyðf ðx; yÞ; gðx; yÞÞ;
2: Project on the y-axis such that TðyÞ ¼ Resxðf ðx; yÞ; gðx; yÞÞ;
3: Discard the extraneous factors from tðxÞ and TðyÞ by using Algorithm 1;
4: Find the parameters N and s, and Compute c according to the Theorem 2.2;
5: Obtain the lower bound e by Corollary 2.1;
6: Solve the real roots of the resultant tðxÞ for the set Sx ¼ fa1;a2; � � � ;aug;
7: Solve the real roots of the resultant TðyÞ for the set Sy ¼ fb1; b2; � � � ; bvg;
8: Match the real root pair to get the solving set S ¼ fðai; bjÞ;1 6 i 6 u;1 6 j 6 vg by Corollary 2.1;
9: Check the root multiplicity of the set S by Proposition 2.2.
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The parallelization of the algorithm that we have just described can be easily done because it performs the same compu-
tations on different steps of data without the necessity of communication between the processors. Observe that the Step 1
and Step 2, Step 6 and Step 7 of the Algorithm 2 can be easily paralleled, respectively.

Now we give a theorem about the computational complexity of the whole algorithm.

Theorem 3.1. Algorithm 2 works correctly as specified and its complexity includes as follows:
(a) Oðdsþ dlgdÞ for computation of real solving univariate polynomial, where d is the degree of corresponding polynomial,
s ¼ 1þmaxi6dlgjaij and ai is the coefficients.

(b) Oðuv
r Þ for matching the solutions of bivariate polynomial systems, where r is the number of computing processors.
Proof. Correctness of the algorithm follows from Theorem 2.2.

(a) The number of arithmetic operations required to isolate all real roots is the number of real root isolation of univariate
polynomial by using subdivision-based Descartes’ rule of sign. Using exactly the same arguments we know that they
perform the same number of steps, that is Oðdsþ dlgdÞ.

(b) As indicated before, the problem of matching the real roots of polynomial system mainly relies on the scale of solu-
tions of every variable and the number of computing processors, respectively. h
3.2. A small example in detail

Example 3.1. We propose a simple example f ðx; yÞ ¼ x2 � y2 � 3 and gðx; yÞ ¼ 3x2 � 2y3 � 1 to illustrate our algorithms.
Step 1: tðxÞ ¼ 4x6 � 45x4 þ 114x2 � 109;
Step 2: TðyÞ ¼ ð�2y3 þ 8þ 3y2Þ2;
Step 3: Discard the extraneous factors TðyÞ ¼ �3y2 � 8þ 2y3;
Step 4: Obtain the parameters N ¼ 5; c ¼ 2; s ¼ 4;
Step 5: Obtain the lower bound e ¼ :1280� 10�4;
Step 6: Solve the real roots of the resultant tðxÞ for the set Sx ¼ f�2:858288520;2:858288520g;
Step 7: Solve the real roots of the resultant TðyÞ for the set Sy ¼ f2:273722337g;
Step 8: Combine the pairs from Sx and Sy respectively, Substitute the pairs into R for variables x and y, determine

whether less than the lower bound e, finally we find that the pairs S ¼ ffx ¼ �2:858288520;
y ¼ 2:273722337g; fx ¼ 2:858288520; y ¼ 2:273722337gg are the solutions for R;

Step 9: The multiplicity of the root of the system is one.

3.3. Generalization and applications

As for the generalization of the algorithm to real solving the multivariate equation systems case, we have to say that the
situation is completely analogous to the bivariate case. However, its key technique is to transform the multivariate polyno-
mial equations to the corresponding univariate polynomial equations. We can consider the Dixon Resultant Method to break
this problem [6]. However, we observe that how to improve the projection algorithm in resultant methods is a significant
challenge.

Moreover, our algorithm is applicable for rapidly computing the minimum distance between two objects collision detec-
tion [26]. This also enables us to improve the complexity of computing the topology of a real plane algebraic curve [9].

By using our discarding extraneous factors and multiplicities computing techniques, we find out the literature [19], the
multiplicities of roots for the points of intersection of two curves are not completely correct in Fig. 1. As a matter of fact, the
multiplicity of the points of intersection ðx ¼ 1:; y ¼ 1:Þ should be a triple root, but they get quintuplicate root. We correct
their illustrated example as follows:
f ðx; yÞ ¼ x3 � 3x2 þ 5x� 4þ y3 � 3y3 þ 5y� 2xy; gðx; yÞ ¼ 2x3 � 2x2 þ x� 4� 4x2yþ 2xyþ 9yþ 3xy2 � 8y2 þ y3:
Based on Algorithm 1, we obtain the following polynomial systems:
tðxÞ ¼ 56x7 � 592x6 þ 2640x5 � 6432x4 þ 9240x3 � 7824x2 þ 3616x� 704;

TðyÞ ¼ �56y7 þ 496y6 � 1776y5 þ 3264y4 � 3192y3 þ 1488y2 � 160y� 64:
So,we execute Algorithm 2 to get the solutions in Table 1.



Table 1
Solutions for computing intersection of two curves.

Root (x,y) d

[x = 1., y = 1.] 3
[x = 1.571428571, y = -.1428571429] 1
[x = 2., y = 2.] 3

−1 0 1 2 3 4 5
−3

−2

−1

0

1
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3

4

5

x

y

Two curves intersection

f(x,y)
g(x,y)

Fig. 1. Intersection of two curves.
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4. Some comparisons

We have implemented the above algorithms as a software package ZMM in Maple 12. For problems of small size like the
example of Section 3, any method can obtain the solutions in little time. But when the size of the problems is not small the
differences appear clearly. Extensive experiments with this package show that this approach is efficient and stable, especially
for larger and more complex bivariate polynomial systems.

We compare our method with LGP [5], Isolate [24], DISCOVERER [25], and GRUR [9]. LGP is a software package for root isolation
of bivariate polynomial systems with local generic position method. Isolate is a tool to solve general equation systems based
on the Realsolving C library by Rouillier. DISCOVERER is a tool for solving semi-algebraic systems. GRUR is a tool to solve bivariate
equation systems. The following examples run in the same platform ofMaple 12 under Windows and AMD Athlon (tm) 2.70
GHZ, 2.00 GB of main memory. We did three sets of experiments. The precision in these experiments is set to be high. In the
three tables, where ’?’ represents that the computation is not finished.
Table 2
Time for computing dense bivariate polynomials with no multiple roots.

system deg solutions Average Time (sec)

f g ZMM LGP Isolate DISCOVERER GRUR

S1 4 7 2 0.031 0.031 0.047 0.313 2.734
S2 6 8 6 0.415 1.328 0.500 1.828 247.203
S3 7 8 6 1.204 2.734 1.500 7.047 382.640
S4 8 9 6 4.211 8.906 4.672 20.437 2714.438
S5 9 10 2 4.070 8.485 4.687 89.235 1645.312
S6 10 7 6 1.805 3.860 2.109 22.250 978.421
S7 10 11 4 21.078 43.734 22.828 ? ?
S8 12 11 2 26.945 54.969 29.094 ? ?
S9 12 13 4 118.266 241.734 123.469 ? ?
S10 13 11 1 15.446 31.485 17.796 ? ?
S11 14 10 8 63.914 200.828 68.594 ? ?
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In Table 2 the results are given both f and g are randomly generated dense polynomials with the same degree and with
integer coefficients between �20 and 20. The command of Maple is as follows:

randpolyð½x; y�; coeffs ¼ randð�20::20Þ; dense; degree ¼ 10Þ.
In Table 3 the results are given both f and g are randomly generated sparse polynomials in the same degree, with sparsity

default, and with integer coefficients between �20 and 20. The command of Maple is as follows:
randpolyð½x; y�; coeffs ¼ randð�20::20Þ; sparse; degree ¼ 10Þ.
In Table 4 the results are given is done with polynomial systems with multiple roots. We randomly generate a polynomial

hðx; y; zÞ and take f ðx; yÞ ¼ Reszðh;hzÞ; gðx; yÞ ¼ fyðx; yÞ. Since f ðx; yÞ is the projection of a space curve to the xy-plane, it most
probably has singular points and f ¼ g ¼ 0 is an equation system with multiple roots. The command of Maple is as follows:

h :¼ randpolyð½x; y; z�; coeffs ¼ randð�5::5Þ; degree ¼ 5Þ; f :¼ resultantðh; diff ðh; zÞ; zÞ; g :¼ diff ðf ; yÞ.
From the Table 2–4, we have the following observations.
In the first two cases, the equations are randomly generated and hence may have no multiple roots. For systems without

multiple roots, ZMM is the fastest method, which is significantly faster than LGP and Isolate. Both ZMM and LGP compute two
resultants and isolate their real roots. LGP is slow, because the polynomials obtained by the shear map are usually dense
and with large coefficients [5]. DISCOVERER and GRUR generally work for equation systems with degrees not higher than ten with-
in reasonable time.

For systems with multiple roots, in the sparse and low degree cases, all methods are fast. Note that our method is quite
stable for equation systems with or without multiple roots. LGP and Isolate are also quite stable, but slower than ZMM for
bivariate equation systems.

We also observe that all methods spend more time with sparse and dense polynomials than polynomials with multiple
roots in the same high degree. This phenomenon needs further exploration.

Remark 4.1. Of course, we should mention that DISCOVERER and Isolate can be used to solve general polynomial equations and
even inequalities. Here our comparison is limited to the bivariate case. In further work, we would like to consider solving
multivariate polynomial equations.
Remark 4.2. As is well known, the parallel algorithm is well suited for the implementation on parallel computers that allows
the increase of the calculation speed. If our algorithms have been fully parallelized by using a large enough number of pro-
cessors for each case, the real solutions of all the examples will have been computed in a couple of seconds.
Table 3
Time for computing sparse bivariate polynomials with no multiple roots.

system deg solutions Average Time (sec)

f g ZMM LGP Isolate DISCOVERER GRUR

S1 5 6 1 0.015 0.032 0.015 0.141 1.032
S2 6 7 3 0.040 0.062 0.047 0.188 5.375
S3 7 5 3 0.024 0.047 0.047 0.265 2.688
S4 8 6 5 0.031 0.031 0.047 0.094 1.031
S5 9 8 2 0.047 0.172 0.078 1.828 51.000
S6 10 11 3 0.063 0.297 0.125 0.656 11.110
S7 11 9 2 0.164 0.609 0.375 3.938 877.875
S8 12 13 2 1.141 2.593 1.453 6.703 1607.719
S9 13 11 4 2.508 5.344 2.969 ? ?
S10 15 17 1 0.532 1.234 1.266 ? ?
S11 20 17 4 18.180 39.688 20.235 ? ?

Table 4
Time for computing bivariate polynomials with multiple roots.

system deg solutions Average Time (sec)

f g ZMM LGP Isolate DISCOVERER GRUR

S1 3 2 2 0.016 0.016 0.016 0.016 0.062
S2 4 3 2 0. 0.032 0.031 0.016 0.094
S3 4 6 7 0.024 0.016 0.047 0.109 1.109
S4 5 4 3 0. 0.016 0. 0.016 0.109
S5 6 5 2 0.015 0. 0. 0.016 0.063
S6 9 8 2 0.016 0.046 0.032 0.015 0.063
S7 12 11 3 0.109 0.234 0.187 0.063 0.094
S8 13 12 7 2.875 137.641 3.141 1.328 207.094
S9 14 13 4 0.860 2.891 0.953 0.141 0.3110
S10 19 18 1 0.672 1.547 0.797 22.156 1520.812
S11 16 15 5 7.945 27.047 9.000 ? ?
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5. Conclusion

In this paper, we propose a zero-matching method to real solving bivariate polynomial equation systems. The basic idea
of this method is to find the lower bound for a bivariate polynomial system when the system is non-zero. Moreover, we pro-
vide an algorithm for discarding extraneous factors with resultant computation and show how to construct the parallel
numerical verification algorithm for real solving the bivariate polynomial system. An efficient method for multiplicities of
the roots is also derived. The complexity of our method has increased steadily with the growth of a bivariate polynomial
system. Extensive experiments show that our approach is efficient and stable. The result of this paper can be extended to
real solving of bivariate polynomial equations with more than two polynomials by using the resultant method. Furthermore,
our method can be easily generalized to the multivariate polynomial systems.
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